QTL mapping of cucumber fruit flesh thickness by SLAF-seq

نویسندگان

  • Xuewen Xu
  • Lu Lu
  • Biyun Zhu
  • Qiang Xu
  • Xiaohua Qi
  • Xuehao Chen
چکیده

Cucumber is an agriculturally and economically important vegetable crop worldwide. Fruit flesh thickness is an important trait for cucumber and also a central determinant of yield, yet little is known about the underlying mechanism of this trait. In this study, bulked segregant analysis (BSA) combined with specific length amplified fragment sequencing (SLAF-seq) was applied to finely map the gene that underlies fruit flesh thickness in cucumber. A 0.19-Mb-long quantitative trait locus on chromosome 2 controlling fruit flesh thickness (QTL fft2.1) was identified and further confirmed by simple sequence repeat (SSR) marker-based classical QTL mapping in 138 F2 individuals. Gene prediction of this 0.19-Mb region identified 20 genes. Quantitative RT-PCR revealed higher expression levels of Csa2 M058670.1 (SET domain protein-lysine methyltransferase) in D8 (thick fruit flesh parent) compared with that in XUE1 (thin fruit flesh parent) during fruit development. Sequence alignment analysis of Csa2M058670.1 from thick and thin fruit flesh cucumber lines revealed a 4-bp deletion mutation in the promoter region of this candidate gene, which may result in the loss of Csa2M058670.1 activation in thin fruit flesh lines. The data presented herein suggest that Csa2M058670.1 is a possible candidate gene for controlling flesh thickness in cucumber.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis

The cucumber (Cucumis sativus L.) exhibits extensive variations in fruit size and shape. Fruit length is an important agronomic and domesticated trait controlled by quantitative trait loci (QTLs). Nonetheless, the underlying molecular and genetic mechanisms that determine cucumber fruit length remain unclear. QTL-seq is an efficient strategy for QTL identification that takes advantage of bulked...

متن کامل

A High-Density Genetic Linkage Map for Cucumber (Cucumis sativus L.): Based on Specific Length Amplified Fragment (SLAF) Sequencing and QTL Analysis of Fruit Traits in Cucumber

High-density genetic linkage map plays an important role in genome assembly and quantitative trait loci (QTL) fine mapping. Since the coming of next-generation sequencing, makes the structure of high-density linkage maps much more convenient and practical, which simplifies SNP discovery and high-throughput genotyping. In this research, a high-density linkage map of cucumber was structured using...

متن کامل

A high-density genetic map of cucumber derived from Specific Length Amplified Fragment sequencing (SLAF-seq)

High-density genetic map provides an essential framework for accurate and efficient genome assembly and QTL fine mapping. Construction of high-density genetic maps appears more feasible since the advent of next-generation sequencing (NGS), which eases SNP discovery and high-throughput genotyping of large population. In this research, a high-density genetic map of cucumber (Cucumis sativus L.) w...

متن کامل

QTL Mapping by SLAF-seq and Expression Analysis of Candidate Genes for Aphid Resistance in Cucumber

Cucumber, a very important vegetable crop worldwide, is easily damaged by pests. Aphid is one of the most serious cucumber pests and frequently cause severe damage to commercially produced crops. Understanding the genetic mechanisms underlying pest resistance is important for aphid-resistant cucumber varieties breeding. In this study, two parental cucumber lines, JY30 (aphid susceptible) and EP...

متن کامل

A second generation SNP and SSR integrated linkage map and QTL mapping for the Chinese mitten crab Eriocheir sinensis

The Chinese mitten crab Eriocheir sinensis is the most economically important cultivated crab species in China, and its genome has a high number of chromosomes (2n = 146). To obtain sufficient markers for construction of a dense genetic map for this species, we employed the recently developed specific-locus amplified fragment sequencing (SLAF-seq) method for large-scale SNPs screening and genot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015